
Structuring Acyclic Process Models

Artem Polyvyanyy1, Luciano Garćıa-Bañuelos2, and Marlon Dumas2

1 Hasso Plattner Institute at the University of Potsdam, Germany
Artem.Polyvyanyy@hpi.uni-potsdam.de

2 Institute of Computer Science, University of Tartu, Estonia
{luciano.garcia,marlon.dumas}@ut.ee

Abstract. This paper addresses the problem of transforming a process
model with an arbitrary topology into an equivalent well-structured
process model. While this problem has received significant attention, there
is still no full characterization of the class of unstructured process models
that can be transformed into well-structured ones, nor an automated
method to structure any process model that belongs to this class. This
paper fills this gap in the context of acyclic process models. The paper
defines a necessary and sufficient condition for an unstructured process
model to have an equivalent structured model under fully concurrent
bisimulation, as well as a complete structuring method.

1 Introduction

In the Business Process Modeling Notation (BPMN) and in similar notations,
a process model is composed of nodes (e.g., tasks, events, gateways) connected
by a “flow” relation. Although BPMN allows process models to have almost any
topology, it is often preferable that process models follow some structure. In this re-
spect, a well-known property of process models is that of (well-)structuredness [1],
meaning that for every node with multiple outgoing arcs (a split) there is a
corresponding node with multiple incoming arcs (a join), such that the set of
nodes between the split and the join form a single-entry-single-exit (SESE) region.
For example, Fig.1(a) shows an unstructured process model, while Fig.1(b) shows
an equivalent structured model. Note that Fig.1(b) uses short-names for tasks (a,
b, c . . .), which appear next to each task in Fig.1(a).

This paper studies the problem of automatically transforming process models
with arbitrary topology into equivalent well-structured models. The motivation
for such a transformation is manifold. Firstly, it has been empirically shown that
structured process models are easier to comprehend and less error-prone than
unstructured ones [2]. Thus, a transformation from unstructured to structured
process model can be used as a refactoring technique to increase process model un-
derstandability. Secondly, a number of existing process model analysis techniques
only work for structured models. For example, a method for calculating cycle
time and capacity requirements of structured process models is outlined in [3],
while a method for analyzing time constraints in structured process models is
presented in [4]. By transforming unstructured process models to structured ones,
we can extend the applicability of these techniques to a larger class of models.
Thirdly, a transformation from unstructured to structured process models can be

mailto:Artem.Polyvyanyy@hpi.uni-potsdam.de
mailto:luciano.garcia@ut.ee;marlon.dumas@ut.ee

2 Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas

Pay by

cash

Pay by

cheque

Update

account

Approve
R1

P1

Reject payment

request

Inform

customer
B1

P2

P3

a

b

c

d

e f

i ot

u

v

w

x y z

(a)

b

a

P3

i ov w x y z

P1

B1

P2

B2 B3

c

d

e f

(b)

Fig. 1. Unstructured process model and its equivalent structured version

used to implement converters from graph-oriented process modeling languages to
structured process modeling languages, e.g., BPMN-to-BPEL.

In the context of flowcharts, without parallel splits and joins, it has been
shown that any unstructured flowchart can be transformed into a structured
one [5]. If we add parallel splits and joins, this result no longer holds: There
exist unstructured process models that do not have equivalent structured ones [1].
Several authors have attempted to classify the sources of unstructuredness in
process models [6,7,8] and to define automated methods for structuring process
models [9,10,11]. However, these methods are incomplete: There is currently no
full characterization of the class of inherently unstructured process models, i.e.,
unstructured process models that have no equivalent structured model. Also,
none of the existing structuring methods is complete. In fact, this problem has
not been fully solved even for acyclic process models. This paper fills this gap.

To streamline the presentation, we make several assumptions. Firstly, we
consider process models composed of nodes (tasks, events, gateways) and control
flow relations. In terms of BPMN, this means that we abstract away from
other process model elements such as artifacts, annotations, associations, groups,
pools, lanes, message flows, sub-process invocations and attributes associated to
sub-process invocations, e.g., repetition. Nonetheless, the proposed method is
applicable even if these types of elements are present in the input model. Simply,
these ancillary elements and attributes need to be moved along with the tasks
or events to which they are attached. In the same vein, we do not distinguish
between events and tasks since, for the purpose of the transformation, both of
these elements are treated equally. Secondly, we consider only sound process
models [12]. This restriction is natural since soundness is a widely-accepted
correctness criterion for process models. Thirdly, we consider process models in
which every node has only one incoming or one outgoing arc. This restriction is
merely syntactical because one can trivially split a node with multiple incoming
and multiple outgoing arcs into two nodes: one node with a single outgoing arc
and the other with a single incoming arc. Fourthly, we consider models with only
one start node and one end node. Again, this is not a restriction since every sound
model with multiple end nodes can be transformed into an equivalent sound model
with a unique end node [12]. The reverse technique can be applied to models
with multiple start nodes. Finally, we do not deal with the following BPMN
constructs: OR gateways, complex gateways, error events and non-interrupting
events. Lifting this latter restriction is left as future work.

Structuring Acyclic Process Models 3

The next section presents a taxonomy of (unstructured) process components
in process models and reviews related work. Next, Sect.3 introduces the formalism
used to represent process models. Sect.4 then introduces the behavioral equiv-
alence used in this paper, viz. fully concurrent bisimulation (FCB), and shows
that two acyclic process models are equivalent under this equivalence notion
iff they have the same set of ordering relations. This result is used in Sect.5 to
characterize the class of acyclic process components that can be structured and
to define a structuring algorithm. Finally, Sect.6 concludes the paper.

2 Background and Related Work

This section discusses a complete taxonomy of process components. Next, we
analyze previous work with respect to the proposed taxonomy.

2.1 Taxonomy of Process Components

The Refined Process Structure Tree (RPST) [13] is a technique to decompose a
process model into a tree of regions. Each node in the RPST maps to a SESE
region, herewith called a process component. A component in the RPST contains
all components at the lower level, and all components at a given level are disjoint.

Each component in the RPST can be classified into one out of four classes [14]:
A trivial (T) component consists of a single flow arc. A polygon (P) represents a
sequence of components. A bond (B) stands for a set of components that share
two common nodes. Any other component is a rigid (R). Rigid components
explicitly define what makes a process model unstructured.

Process component

Trivial Polygon Bond Rigid

Homogeneous Heterogeneous

XOR AND

Acyclic Cyclic

Acyclic Cyclic

Fig. 2. Taxonomy

Fig.1 exemplifies the RPST decomposition in
the form of dotted boxes. For instance in Fig.1(a),
polygon P1 is the root of the RPST and corre-
sponds to the whole process model. Polygon P1
contains bond B1 that, in turn, contains polygons
P2 and P3. Observe that trivial components and
polygons that are composed of two flow arcs are
not visualized for simplicity reasons.

Trivials, polygons, and bonds are structured
process components. If one could transform each
rigid component in the RPST into an equivalent
structured component, the entire model could be structured by traversing the
RPST bottom-up and replacing each rigid by its equivalent structured component.
Accordingly, the rest of the paper focuses on structuring rigid components.

The methods for structuring rigid components differ depending on the types
of gateways present in the rigid and whether the rigid contains cycles or not. We
classify rigids as follows. A homogeneous rigid contains either only xor or only
and gateways. We call these rigids (homogeneous) and rigids and (homogeneous)
xor rigids, respectively. A heterogeneous rigid contains a mixture of and/xor
gateways. Heterogeneous and homogeneous xor rigids are further classified into
cyclic, if they contain at least one cycle, or acyclic. Importantly, a safe process
model cannot contain homogeneous and rigids with cycles. Upon this background,
a taxonomy of process components is provided in Fig.2.

4 Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas

2.2 Related Work

The problem of structuring process models is relevant in the context of designing
BPMN-to-BPEL transformations. However, BPMN-to-BPEL transformations
such as [11] treat rigids as black-boxes that are translated using BPEL links or
event handlers, rather than seeking to structure them. In this sense, the present
contribution is complementary to this previous work.

A large body of work on flowcharts and GOTO program transformation [5],
has addressed the problem of structuring xor rigids. In some cases, these trans-
formations introduce additional boolean variables in order to encode part of the
control flow, while in other cases they require certain nodes to be duplicated.

In [1], the authors show that not all acyclic and rigids can be structured. They
do so by providing one counter-example, but do not give a full characterization
of the class of models that can be structured nor do they define any automated
transformation. Instead, they explore some causes of unstructuredness. In a
similar vein, [6] presents a taxonomy of unstructuredness in process models,
covering cyclic and acyclic rigids. But the taxonomy is incomplete, i.e., it does
not cover all possible cases of models that can be structured. Also, the authors
do not define an automated structuring algorithm.

In [7], the authors outline a classification of process components using region
trees, a predecessor of the RPST. However, the authors do not provide a complete
structuring method for acyclic heterogeneous rigids, e.g., the one in Fig.1(a). A
similar remark applies to [10]. Meanwhile, [9] proposes a method for restructuring
xor rigids based on GOTO program transformations, and extends this method
to process graphs where such xor rigids are nested inside bonds. However, this
method cannot deal with and rigids nor heterogeneous rigids.

3 Preliminaries

Below we introduce the notations used subsequently to represent process models.

3.1 Petri Nets

Petri nets are a well-known formalism for modeling concurrent systems. Below
we present standard definitions of Petri nets and their semantics.

Definition 1 (Petri net). A Petri net, or a net, is a tuple N = (P,T,F), with
P and T as finite disjoint sets of places and transitions, and F ⊆ (P ×T)∪(T ×P)
as the flow relation.

We identify F with its characteristic function on the set (P ×T)∪(T ×P). We write
X = (P ∪ T) for all nodes of a net. For a node x ∈X, ●x = {y ∈X ∣ F (y, x) = 1}
and x● = {y ∈X ∣ F (x, y) = 1}. A node x ∈X is an input (output) node of a node
y ∈X, iff x ∈ ●y (x ∈ y●). For Y ⊆X, ●Y = ⋃y∈Y ●y and Y ● = ⋃y∈Y y●. We denote
by F + and F ∗ irreflexive and, respectively, reflexive transitive closures of F .

Definition 2 (Net semantics). Let N = (P,T,F) be a net.
○ M ∶ P → N0 is a marking of N , where M(p), p ∈ P , returns the number of

tokens in place p. [p] denotes the marking when place p contains just one
token and all other places contain no tokens.

Structuring Acyclic Process Models 5

○ For any transition t ∈ T and for any marking M of N , t is enabled in M ,
denoted by (N,M)[t⟩, iff ∀p ∈ ●t ∶M(p) ≥ 1.

○ If t ∈ T is enabled in M , then it can fire, which leads to a new marking M ′,
denoted by (N,M)[t⟩(N,M ′). The new marking M ′ is defined by M ′(p) =
M(p) − F (p, t) + F (t, p), for each place p ∈ P .

○ A sequence of transitions σ = t1 . . . tn, n ∈ N, is a firing sequence, iff there exist
markings M0 . . .Mn, such that for all 1 ≤ i ≤ n holds (N,Mi−1)[ti⟩(N,Mi).

○ For any two markings M and M ′ of N , M ′ is reachable from M in N , denoted
by M ′ ∈ [N,M⟩, iff there exists a firing sequence σ leading from M to M ′.

○ A net system, or a system, is a pair (N,M0), where N is a net and M0 is a
marking of N . M0 is called the initial marking of N .

Workflow (WF-)nets [15] are a subclass of Petri nets specifically designed to
represent business process models. A WF-net is a net with two special places:
one to mark the start and the other the end of a workflow execution.

Definition 3 (WF-net, Short-circuit net, WF-system).
A Petri net N = (P,T,F) is a workflow net, or a WF-net, iff N has a dedicated
source place i ∈ P , with ●i = ∅, N has a dedicated sink place o ∈ P , with o● = ∅,
and the short-circuit net N ′ = (P,T ∪ {t⋆}, F ∪ {(o, t⋆), (t⋆, i)}), t⋆ ∉ T , of N is
strongly connected. A WF-system is a pair (N,Mi), where Mi = [i].

Soundness and safeness are basic properties of WF-systems [15]. Soundness states
that every execution of a WF-system ends with a token in the sink place, and
once a token reaches the sink place, no other tokens remain in the net. Safeness
refers to the fact that there is never more than one token in the same place.

In the rest of the paper, we also use three structural subclasses of Petri nets
(free-choice net, occurrence net, and causal net), as well as labeled Petri nets to
distinguish observable and silent transitions. These are defined below.

Definition 4 (Free-choice net, Occurrence net, Causal net).
A Petri net N = (P,T,F) is a free-choice net, iff ∀p ∈ P , ∣p ● ∣ > 1 ∶ ●(p●) = {p}.
Let N = (P,T,F) be a net such that ∀x, y ∈ P ∪ T ∶ (x, y) ∈ F + ⇒ (y, x) ∉ F +.
○ Net N is an occurrence net, iff ∀p ∈ P ∶ ∣ ● p∣ ≤ 1.
○ Net N is a causal net, iff ∀p ∈ P ∶ ∣ ● p∣ ≤ 1 ∧ ∣p ● ∣ ≤ 1.

Definition 5 (Labeled net). A labeled net is a tuple N = (P,T,F,T , λ), where
(P,T,F) is a net, T is a set of labels, such that τ ∈ T , and λ ∶ T → T is a function
that assigns labels to transitions. If λ(t) ≠ τ , then t is observable; otherwise, t is
silent. λ is distinctive if it is injective on a subset of observable transitions.

3.2 Process Model

As discussed in Sect.1, we consider process models consisting of activities and
gateways, as captured in the following definition.

Definition 6 (Process model).
A process model is a tuple W = (A,G+,G×,C,A, µ), where A is a non-empty set
of activities (or tasks), G+ is a set of and gateways, G× is a set of xor gateways
(these sets are disjoint). We write G = (G+∪G×) for all gateways and Z = (A∪G)
for all nodes of a model. C ⊆ Z ×Z defines the control flow. A is a non-empty set
of names and µ ∶ A→ A is a function that assigns names to tasks.

6 Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas

ta

tt,a

pi

ti tb

tt,b

te

tt,e

pt

pt,a

pt,b

pt,e

tf

pe,f

pz

tu

tv

pa,u

pb,v

pw

px

tc

td

pw,c

px,d

tw,c

tx,d ty

pc,y

pd,y

to

po
tz,o pz,o

R1

Fig. 3. A WF-net that corresponds to the process model in Fig.1(a)

A task a ∈ A is a source, iff ●a = ∅ and it is a sink, iff a● = ∅, where ●x, x ∈ Z,
stands for a set of immediate predecessors and x● stands for a set of immediate
successors of node x. As discussed in Sect.1, we assume that (Z,C) is a graph
with a single source, a single sink and is such that every node is on a path from
the source to the sink. Each task a ∈ A has at most one incoming and at most
one outgoing arc, i.e., ∣●a∣ ≤ 1 ∧ ∣a●∣ ≤ 1, while each gateway is either a split or a
join: A gateway g ∈ G is a split, iff ∣●g∣ = 1 ∧ ∣g●∣ > 1. A gateway g ∈ G is a join,
iff ∣●g∣ > 1 ∧ ∣g●∣ = 1. The execution semantics of process models is defined by a
mapping to labeled free-choice Petri nets (cf. Definition 7). For example, Fig.3
shows the WF-net of the process model in Fig.1(a). The figure highlights the
subnet that corresponds to rigid component R1 in Fig.1(a) (cf. dotted box).

Definition 7 (WF-net of a process model). Let W = (A,G+,G×,C,A, µ)
be a process model. Let I and O be sources and sinks of W , respectively. The
labeled net N = (P,T,F,T , λ) corresponding to W is defined by:
○ P = {px ∣ x ∈ G×} ∪ {px,y ∣ (x, y) ∈ C ∧ y ∈ A ∪G+} ∪ {px ∣ x ∈ I ∪O}.
○ T = {tx ∣ x ∈ A ∪G+} ∪ {tx,y ∣ (x, y) ∈ C ∧ x ∈ G×}.
○ F = {(tx, py) ∣ (x, y) ∈ C ∧x ∈ A∪G+ ∧y ∈ G×}∪{(tx, px,y) ∣ (x, y) ∈ C ∧x, y ∈
A ∪G+} ∪ {(tx,y, py) ∣ (x, y) ∈ C ∧ x, y ∈ G×} ∪ {(tx,y, px,y) ∣ (x, y) ∈ C ∧ x ∈
G×∧y ∈ A∪G+}∪{(px, tx,y) ∣ (x, y) ∈ C∧x ∈ G×}∪{(px,y, ty) ∣ (x, y) ∈ C∧y ∈
A ∪G+} ∪ {(px, tx) ∣ x ∈ I} ∪ {(tx, px) ∣ x ∈ O}.

○ T = A ∪ {τ}. λ(tx) = µ(x), tx ∈ T,x ∈ A, otherwise λ(t) = τ, t ∈ T .

Definition 7 states that a task is mapped to a Petri net transition with a single
input and a single output arc. An and gateway maps to a transition with multiple
outgoing arcs (and-split) or multiple incoming arcs (and-join). An xor gateway
maps to a place with multiple outgoing arcs (xor-split) or multiple incoming arcs
(xor-join). The places corresponding to xor-splits are immediately followed by
empty (τ) transitions representing the branching conditions (cf. transitions tx,y
introduced in the mapping). Sources and sinks of the process model are mapped
to places.

A process model is sound if its corresponding WF-net is sound. In this paper
we only consider sound process models. We note that a sound free-choice WF-
system is guaranteed to be safe [16] and Definition 7 always produces free-choice
WF-nets. Thus the rest of the paper deals with sound and safe process models.

4 Behavioral Equivalence of Process Models

This section motivates fully concurrent bisimulation as the equivalence notion for
process models, cf., Sect.4.1, and discusses the procedure of checking equivalence
for the class of behavior captured by occurrence nets, cf., Sect.4.2.

Structuring Acyclic Process Models 7

4.1 Fully Concurrent Bisimulation

An unstructured model and the corresponding structured model are structurally
different, but behaviorally equivalent. There exist many notions of behavioral
equivalence for concurrent systems [17]. A common notion of behavioral equiva-
lence for concurrent systems is that of bisimulation. Related notions are those of
weak bisimulation and branching bisimulation, which abstract away from silent

ta

tb

tc

td

td

td

tc

td

td

tc

te tf

toti

pi popz

px

py

pw

pc,d,1

pd,c,1

pc,d,2

pd,c,2

pe,fpw,e

pw,b

pw,atw,a

tw,b

tw,e

Fig. 4. Sequential simulation of the net in Fig.3

transitions. These notions have
been advocated as being suit-
able for comparing process mod-
els [12]. However, we argue that
they are not suitable for our
purposes. These three notions
adopt an interleaving semantics
– i.e., no two tasks are executed
exactly at the same time. Thus,
a concurrent system and its se-
quential simulation are considered equivalent. For example, Fig.4 shows the
sequential simulation of the net in Fig.3. This net is structured and weakly
bisimilar to the net in Fig.3, but it contains no parallel branch. We could take
any process model, compute its sequential simulation, structure this sequential
net using GOTO program transformations, and transform back the resulting
sequential net into a structured process model. This structuring method is com-
plete, but if we start with a process model containing and gateways, we obtain a
(much larger) structured process model without any parallel branches.

Accordingly, we adopt a notion of equivalence that preserves the level of con-
currency of observable transitions, viz. fully concurrent bisimulation (FCB) [18].
FCB is defined in terms of concurrent runs of a system, a.k.a. processes in the
literature (but not to be confused with “business processes” or workflows).

Let N = (P,T,F) be a causal net. A P-cut c ⊆ P of N is a maximal set of
places unordered w.r.t. F +. Let Min(N) define the set {x ∈X ∣ ● x = ∅} and let
Max(N) define the set {x ∈X ∣ x● = ∅}.

Definition 8 (Process). A process π = (Nπ, ρ) of a system S = (N,M0), N =
(P,T,F), consists of a causal net Nπ = (Pπ, Tπ, Fπ) and a function ρ ∶Xπ →X:
○ ρ(Pπ) ⊆ P, ρ(Tπ) ⊆ T ,
○ Min(Nπ) is a P-cut, which corresponds to the initial marking M0, that is
∀ p ∈ P ∶M0(p) = ∣ρ−1(p) ∩Min(Nπ)∣, and

○ ∀ t ∈ Tπ ∀ p ∈ P ∶ (F (p, ρ(t)) = ∣ρ−1(p) ∩ ●t∣) ∧ (F (ρ(t), p) = ∣ρ−1(p) ∩ t ● ∣).
A process π of S is initial, iff Tπ = ∅.

A process π′ is an extension of a process π if it is possible to observe π before
one observes π′. Consequently, process π is a prefix of π′.

Definition 9 (Prefix, Process extension).
Let π = (Nπ, ρ), Nπ = (Pπ, Tπ, Fπ), be a process of S = (N,M0), N = (P,T,F).
Let c be a P-cut of Nπ and let c↓ be the set {x ∈ Xπ ∣ ∃ y ∈ c ∶ (x, y) ∈ F ∗}. A
process π↓c is a prefix of π, iff π↓c = ((Pπ ∩ c

↓, Tπ ∩ c↓, F ∩(c↓ × c↓)), ρ∣c↓). A process
π′ is an extension of process π if π is a prefix of π′.

8 Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas

In order to define FCB, we need two auxiliary definitions: λ-abstraction of a
process, which is a process footprint that ignores silent transitions, and the
order-isomorphism of λ-abstractions.

Definition 10 (Abstraction of a process of a labeled system).
Let S = (N,M0), N = (P,T,F,T , λ), be a labeled system and let π = (Nπ, ρ),
Nπ = (Pπ, Tπ, Fπ), be a process of S. The λ-abstraction of π, denoted by
αλ(π) = (T ′π,≺, λ

′), is defined by T ′π = {t ∈ Tπ ∣ λ(ρ(t)) ≠ τ}, ≺ = {(t1, t2) ∈
T ′π × T

′
π ∣ (t1, t2) ∈ F

+}, and λ′ ∶ T ′π → T , such that λ′(t) = λ(ρ(t)), t ∈ T ′π.

Two λ-abstractions are order-isomorphic if there exists a one-to-one correspon-
dence between transitions of both abstractions that also preserves the ordering
of the corresponding transitions in the respective abstractions.

Definition 11 (Order-isomorphism of abstractions).
Let αλ1 = (T1,≺1, λ1) and αλ2 = (T2,≺2, λ2) be two λ-abstractions, both with
labels in T . Then αλ1 and αλ2 are order-isomorphic, denoted by αλ1 ≅ αλ2 ,
iff there is a bijection β ∶ T1 → T2 such that ∀ t ∈ T1 ∶ λ1(t) = λ2(β(t)) and
∀ t1, t2 ∈ T1 ∶ t1 ≺1 t2 ⇔ β(t1) ≺2 β(t2).

Given the above, fully concurrent bisimulation is defined as follows.

Definition 12 (Fully concurrent bisimulation).
Let S1 = (N1,M

1
0) and S2 = (N2,M

2
0) be labeled systems,N1 = (P1, T1, F1,T1, λ1)

and N2 = (P2, T2, F2,T2, λ2). S1 and S2 are fully concurrent bisimilar, denoted
by S1 ≈ S2, iff there is a set B ⊆ {(π1, π2, β)}, such that:
(i) π1 is a process of S1, π2 is a process of S2, and β is a relation between the

non-τ transitions of π1 and π2.
(ii) If π1

0 and π2
0 are the initial processes of S1 and S2, respectively, then

(π1
0 , π

2
0 ,∅) ∈ B.

(iii) If (π1, π2, β) ∈ B, then β is an order-isomorphism between the λ1-abstraction
of π1 and the λ2-abstraction of π2.

(iv) ∀(π1, π2, β) ∈ B ∶
(a) If π′1 is an extension of π1, then ∃(π′1, π

′
2, β

′) ∈ B where π′2 is an extension
of π2 and β ⊆ β′.

(b) Vice versa.

FCB defines an equivalence relation on labeled systems that is stricter than weak
bisimulation and related notions. The nets in Fig.4 and Fig.3 are weakly bisimilar
but not FCB-equivalent. Meanwhile, the two models in Fig.1 are FCB-equivalent
(with the understanding that two process models are FCB-equivalent if the
corresponding Petri nets are FCB-equivalent).

4.2 Behavioral Equivalence and Ordering Relations

The above definition of FCB-equivalence is abstract and hardly of any use when
synthesizing structured nets from unstructured ones. Accordingly, we employ a
more convenient way of reasoning about FCB-equivalence based on the ordering
relations of occurrence nets. The idea is that any pair of nodes in an occurrence
net can be in a precedence, conflict, or concurrent ordering relation as defined
below, and these ordering relations can be used to reason about FCB-equivalence.

Structuring Acyclic Process Models 9

Definition 13 (Ordering relations).
Let N = (P,T,F) be an occurrence net and let x, y ∈X be two nodes of N .
○ x precedes y, denoted by x↝N y, iff (x, y) ∈ F +.
○ x and y are in conflict, denoted by x #N y, iff ∃ t1, t2 ∈ T, t1 ≠ t2 ∶ (●t1 ∩●t2 ≠
∅) ∧ t1 ↝N x ∧ t2 ↝N y.

○ x and y are concurrent, denoted by x ∣∣N y, iff they are neither in precedence,
nor in conflict.

The set R = {↝N ,#N , ∣∣N} forms the ordering relations of N .

Let N = (P,T,F,T , λ) be a labeled occurrence net and let T ′ = {t ∈ T ∣ λ(t) ≠ τ}.
The λ-ordering relations of N are formed by the set Rλ = {↝N ∩ T ′ × T ′,#N ∩
T ′ × T ′, ∣∣N ∩ T ′ × T ′}. We say that two ordering relations are isomorphic if for
each pair of observable transitions the ordering relation coincides.

Definition 14 (Isomorphism of ordering relations).
Let N1 = (P1, T1, F1,T1, λ1) and N2 = (P2, T2, F2,T2, λ2) be two labeled occur-
rence nets with distinctive labelings. Let T ′1 and T ′2 denote non-τ transitions of
N1 and N2, respectively. Two λ-ordering relations Rλ1 of N1 and Rλ2 of N2 are
isomorphic, denoted by Rλ1 ≅ Rλ2 , iff there is a bijection γ ∶ T ′1 → T ′2, such that:
○ ∀ t ∈ T ′1 ∶ λ1(t) = λ2(γ(t)), and
○ ∀ t1, t2 ∈ T

′
1 ∶ (t1 ↝N1 t2 ∧ γ(t1) ↝N2 γ(t2)) ∨ (t2 ↝N1 t1 ∧ γ(t2) ↝N2 γ(t1)) ∨

(t1 #N1 t2 ∧ γ(t1) #N2 γ(t2)) ∨ (t1 ∣∣N1 t2 ∧ γ(t1) ∣∣N2 γ(t2)).

Finally, we show that two occurrence nets with isomorphic ordering relations are
FCB-equivalent, and vice-versa. This result is exploited in the next section.

Theorem 1. Let S1 = (N1,M
1
i), N1 = (P1, T1, F1,T1, λ1), and S2 = (N2,M

2
i),

N2 = (P2, T2, F2,T2, λ2), be two labeled occurrence systems with distinctive label-
ings and T ′1 ⊆ T1, T ′2 ⊆ T2 observable transitions, such that there exists bijection
ψ ∶ T ′1 → T ′2 for which holds λ1(t) = λ2(ψ(t)), for all t ∈ T ′1. Let Rλ1 and Rλ2 be
the λ-ordering relations of N1 and N2. Then, it holds:

S1 ≈ S2 ⇔ Rλ1 ≅ Rλ2 .

Proof. We prove each direction of the equality separately.
(⇒) Let S1 and S2 be FCB-equivalent. We want to show that Rλ1 ≅ Rλ2 .

Let us assume that S1 ≈ S2 holds, but Rλ1 ≅ Rλ2 does not hold. Furthermore,
let us consider transitions t1i , t

1
j ∈ T

′
1 that are in one-to-one correspondence

with transitions t2i , t
2
j ∈ T

′
2, i.e., λ1(t

1
i) = λ2(ψ(t

2
i)) and λ1(t

1
j) = λ2(ψ(t

2
j)).

All scenarios can be reduced to the following two cases:

Case 1: (t1i ∥N1 t
1
j or t1i ↝N1 t

1
j , and t2i #N2 t

2
j). If t1i ∥N1 t

1
j or t1i ↝N1 t

1
j , then

there exists process π1 in S1 that contains t1i and t1j . If t2i #N2 t
2
j , then there

exists no process π2 in S2 that contains t2i and t2j .

Case 2: (t1i ↝N1 t
1
j , and t2j ↝N2 t

2
i or t2i ∣∣N2 t

2
j). Let π1 be a process in S1 that

contains t1i and t1j , and let π2 be a process in S2 that contains t2i and t2j .
Then, there exists no φ ⊆ ψ, such that φ is an order-isomorphism between
λ-abstractions of π1 and π2.

In both cases we reach the contradiction, i.e., systems S1 and S2 cannot be
FCB-equivalent if the λ-ordering relations are not isomorphic.

10 Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas

(⇐) Let Rλ1 ≅ Rλ2 . We want to show that S1 and S2 are FCB-equivalent.
Let us assume that Rλ1 ≅ Rλ2 holds, but S1 ≈ S2 does not hold. Then,
for instance, in S1 there exists process π′1 that has no corresponding order-
isomorphic process in S2. Suppose that π′1 has the minimal size among all such
processes, i.e., any prefix of π′1 has a corresponding order-isomorphic process
in S2. Let π′1 be an extension of π1 by exactly one observable transition
t1j ∈ T ′1. Let π2 be a process in S2 that is order-isomorphic with π1. Let

t2j ∈ T
′
2 be in one-to-one correspondence with t1j , i.e., λ1(t

1
j) = λ2(ψ(t

2
j)). All

scenarios can be reduced to the following three cases:

Case 1: There exists process π′2 that contains t2j and is an extension of π2 by one

observable transition. Moreover, there exists t1i ∈ T
′
1 in π1, such that t1i ↝N1 t

1
j .

However, it holds t2i ∣∣N2 t
2
j , for t2i ∈ T

′
2, such that λ1(t

1
i) = λ2(ψ(t

2
i)); otherwise

there exists an order-isomorphism φ ⊆ ψ between π′1 and π′2.
Case 2: There exists no process π′2 that contains t2j and is an extension of π2.

Moreover, there exists t1i ∈ T
′
1 in π1, such that t1i ↝N1 t

1
j . However, it holds

t2i #N2 t
2
j , for t2i ∈ T

′
2, such that λ1(t

1
i) = λ2(ψ(t

2
i)).

Case 3: There exists process π′2 that contains t2j and is an extension of π2, but

not by only one observable transition. Then, there exists t2k ∈ T
′
2 and process

π′′2 in S2, such that t2k ↝N2 t
2
j , π

′′
2 is prefix of π′2, and π2 is prefix of π′′2 .

However, t1k ∈ T
′
1, λ1(t

1
k) = λ2(ψ(t

2
k)), is not in π′1 and, hence, t1k N1 t

1
j .

In all three cases we reach the contradiction, i.e., the λ-ordering relations
cannot be isomorphic if systems S1 and S2 are not FCB-equivalent. ⊓⊔

5 Synthesis of Structured Process Models

The key idea of the proposed structuring method is to compute the ordering rela-
tions of every rigid component, and to synthesize a structured process component
from these ordering relations (if such a structured process component exists). A
structured process component is one whose RPST contains only trivials, bonds
and polygons. Accordingly, what we need is to find such structures in the graph
induced by the ordering relations of the component. To this end, we rely on the
concept of modular decomposition [19]. Below we discuss how to compute the
ordering relations of a process component and then we use the output of this
step to synthesize a structured component based on the modular decomposition.

5.1 Computing Ordering Relations

In order to compute the ordering relations of tasks in a process component, we
first need to build a corresponding occurrence net, using a procedure known
as unfolding [20]. For example, Fig.5 presents the occurrence net for the rigid
component R1 in Fig.3. The occurrence net may include multiple transitions
referring to the same task, e.g., transitions tc,1 and tc,2 refer to task c. If we
used the ordering relations computed from the occurrence net to synthesize a
structured process component, the component would contain many duplicate
tasks. Fortunately, for any safe net there exists a prefix of its occurrence net, called
the complete prefix unfolding [20], that is more compact than the occurrence net

Structuring Acyclic Process Models 11

but contains all the information about markings contained in the occurrence
net. Moreover, this prefix is finite (even for safe nets with cycles). The complete
prefix unfolding is obtained by truncating the occurrence net in points where the
information about reachable markings starts to be redundant.

Definition 15 (Complete Prefix Unfolding, Cutoff transition).
Let N = (P,T,F) be an occurrence net.
○ A local configuration ⌈t⌉ of a transition t in an occurrence net is the set of

transitions that precede t, i.e., ⌈t⌉ = {t′ ∈ T ∣ (t′, t) ∈ F ∗}.
○ The final marking of a local configuration Mark(⌈t⌉) is the set of places that

are marked after all the transitions in ⌈t⌉ fire.
○ An adequate order ⊲ is a strict well-founded partial order on local configura-

tions, so that ⌈t⌉ ⊂ ⌈t′⌉ implies ⌈t⌉ ⊲ ⌈t′⌉3.
○ A transition t of an occurrence net is a cutoff transition if there exists a

corresponding transition t′, such that Mark(⌈t⌉) = Mark(⌈t′⌉) and ⌈t′⌉ ⊲ ⌈t⌉.
○ A complete prefix unfolding is the greatest backward closed subnet of an

occurrence net containing no transitions after cutoff transitions.

ta

tb

Complete prefix unfolding

pt,a
tt,a

pt

pt,b
tt,b

pa,u

pb,v

tu

tv

pw

px

pw

px

tw,c,1

tx,d,1

tc,1

td,1

pw,c

px,d

tc,2

td,2

pw,c

px,d

pc,y

pd,y

pc,y

pd,y

ty,1 pz

pz
ty,2

tw,c,2

tx,d,2

Fig. 5. Occurrence net and complete prefix
unfolding of the running example

The dotted lines in Fig.5 indicate
which parts of the occurrence net are
truncated in the complete prefix un-
folding. In the unfolding, transition tv
is a cutoff transition.

Alg.1 (adapted from [21]) com-
putes the ordering relations based on
a complete prefix unfolding. This al-
gorithm has a low polynomial time to
the size of the net. However, the over-
all complexity of computing ordering
relations is dominated by the exponential worst-case complexity of computing
the prefix unfolding, which is an NP-complete problem. Observe that in the case
of and rigids this step is not required as the corresponding WF-net is always an
occurrence net. Besides, we do not compute the prefix unfolding over the whole
net, but only on individual rigid components of the net. Tests we have conducted
with sample process models show that the prefix unfolding computation takes
sub-second times4. This finding is in line with other work that have empirically
shown that prefix unfolding computation is efficient in practice [20].

Alg.1 comprises two phases. First, it computes the ordering relations of transi-
tions on the unfolding according to Definition 13. Then, it updates the relations of
transitions in the local configuration of every cutoff transition to overcome the ef-
fects of truncation. The update must be performed in reverse topological order. For
instance, the algorithm will assert (tb ↝ tc,1) in addition to (ta ↝ tc,1), i.e., task c
may be preceded by either a or b. Note that we impose an additional requirement

3 Several definitions of adequate order exist; we use the one defined in [20], because it
has been shown to generate compact unfoldings.

4 Using the Mole tool for prefix unfolding http://www.fmi.uni-stuttgart.de/szs/

tools/mole/ which implements the algorithm in [20].

http://www.fmi.uni-stuttgart.de/szs/tools/mole/
http://www.fmi.uni-stuttgart.de/szs/tools/mole/

12 Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas

Algorithm 1: Compute Ordering Relations of a Complete Prefix Unfolding

Input: A WF-net W = (Pw, Tw, Fw), its Complete Prefix Unfolding
U = (P,T,F), and the mapping function lw ∶ T → Tw

Output: Matrix ORel containing the ordering relations of transitions in U
foreach ti, tj ∈ T do Assert (ti ∥U tj) in ORel;
foreach ti ∈ T following a preorder traversal of U do

foreach tj ∈ T such that tj ∈ ●(● ti) do
Assert (tj ↝U ti) in ORel
foreach tk ∈ T such that (tk ↝U tj) ∈ ORel do

Assert (tk ↝U ti) in ORel
foreach tk ∈ T such that (tk #U tj) ∈ ORel do

Assert (tk #U ti), (ti #U tk) in ORel
foreach tj ∈ T such that ti ≠ tj ∧ ●ti ∩ ●tj ≠ ∅ do

Assert (tk #U ti) in ORel
foreach tk ∈ T such that (tj ↝U tk) ∈ ORel do

Assert (tk #U ti), (ti #U tk) in ORel
// Iterate over cutoff transitions in reverse topological order

foreach ti, tj , tk ∈ T such that ti is a cutoff in U , tj is not a cutoff in U ,
Mark(⌈ti⌉) =Mark(⌈tj⌉), lw(ti)● = lw(tj)●, and lw(ti) ● ∩ ● lw(tk) ≠ ∅ do

foreach tm, tn ∈ T such that (tk ↝U tm) ∈ ORel ∨ tk = tm and tn ∈ ⌈ti⌉ do
Assert (tn ↝U tm) in ORel

return ORel

i.e., postsets of a cutoff transition and its corresponding transition must map
to the same set of places in the WF-net, for all cutoff transitions. If a complete
prefix unfolding does not meet this requirement, it must be expanded.

5.2 From Ordering Relations to Process Models

This section presents the algorithm for synthesizing a well-structured process
model that is fully concurrent bisimilar with a given (unstructured) model. Also,
we identify the cases when an equivalent well-structured model does not exist.

According to Theorem 1, two process models are fully concurrent bisimilar,
iff they demonstrate same ordering relations. Given an (unstructured) process
model, the algorithm proceeds by computing its ordering relations, as discussed
in Sect. 5.1. Afterwards, the algorithm attempts to synthesize a well-structured
model with the same ordering relations.

Let N = (P,T,F,T , λ) be a labeled occurrence net. The ordering relations
graph of N is a triple Gλ = (V,E,L), where V is the set of non-τ transitions
of N , L = {ε,↝,#,∥} is a set of labels, and E ∶ V × V → L is an edge labeling
function, such that E(x, y) = ⊕, x, y ∈ V and ⊕ ∈ L ∖ ε, if x ⊕N y, otherwise
E(x, y) = ε. Self-relations are ignored, i.e., E(x,x) = ε, x ∈ V . Observe that Gλ is
an alternative representation of λ-ordering relations Rλ of N .

Fig.6(a) shows the ordering relations graph of a complete prefix unfolding
that is given in Fig.5. As the conflict and concurrency relations are symmetric,
the corresponding edges are visualized as two-sided arrows; solid and dotted for
the conflict (a # b) and concurrency (c ∥ d) relation, respectively. Regular arrows
reflect the precedence relation, which is transitive and asymmetric. Edges that
have ε labels are not visualized. Because of the precedence relation, most of the
ordering relations graphs are asymmetric.

Structuring Acyclic Process Models 13

a

b

c

d

(a)

b

a

c

(b)

a

b c

(c)

a b c

(d)

a b c

(e)

a

b

c

d

L1
C1 C2

(f)

Fig. 6. (a) An ordering relations graph, (b) an and bond component, (c) an and
complete module, (d) a polygon component, (e) a linear module, (f) the MDT of (a)

The RPST of a well-structured model is composed of trivial, polygon, and
bond (either and or xor) components. Contrary to a rigid component that can
have an arbitrary topology, the structure of each component of a well-structured
model is well-defined and has a precise structural characterization in terms of the
corresponding ordering relations graph. The ordering relations graph of a bond is
a complete graph, or a clique. All edges in the graph have the same label: # for
xor bonds and ∥ for and bonds. This topology is consistent with the intuition
behind: all nodes in a xor bond are in conflict, i.e., only one is executed; all
nodes in an and bond are concurrently executed. Fig.6(b) shows an and bond
with three parallel branches, whereas Fig.6(c) shows the corresponding clique of
concurrent relations. In the cases of a trivial and polygon component, the ordering
relations graph is a direct acyclic graph representing the transitive closure, or
the total order, of the precedence relation. All edges of the graph are labeled ↝.
Fig.6(d) shows a polygon composed of three activities, whereas Fig.6(e) presents
the corresponding transitive closure over the precedence relation.

Let G = (V,E,L) be an ordering relations graph. A module M ⊆ V of G is a
non-empty subset of transitions that have a uniform relations with transitions
V ∖M , i.e., ∀ x, y ∈M ∀ z ∈ V ∖M ∶ E(x, z) = E(y, z) ∧E(z, x) = E(z, y). Note
that singleton sets of V are referred to as trivial modules.

Definition 16 (Complete, Linear, Primitive).
Let M be a non-singleton module of G.
○ M is complete (C), iff ∃ l ∈ {#,∥} ∀ x, y ∈ M,x ≠ y ∶ E(x, y) = l, i.e., the

subgraph induced by M is a complete graph, or a clique. If l = #, then M is
xor complete, otherwise M is and complete.

○ M is linear (L), iff there exists a linear order (x1, ..., x∣T ′∣) of elements of T ′,
such that E(xi, xj) = ↝, if i < j, and E(xi, xj) = ε otherwise.

○ If M is neither complete, nor linear, then M is primitive (P).

The following proposition summarizes relations between components of a process
model and modules of an ordering relations graph.

Proposition 1. Let C1 be a process component and let M1 be the corresponding
ordering relations graph. Let M2 be an ordering relations graph and let C2 be
the corresponding process component.
1. If C1 is trivial or polygon, then M1 is linear.
2. If M2 is linear, then there exists C2 that is trivial or polygon.
3. If C1 is and (xor) bond, then M1 is and (xor) complete.
4. If M2 is and (xor) complete, then there exists C2 that is and (xor) bond.

Two modules M1 and M2 of G overlap, iff they intersect and neither is a subset

14 Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas

of the other, i.e., M1 ∖M2, M1 ∩M2 , and M2 ∖M1 are all non-empty. M1 is
strong, iff there exists no module M2 of G, such that M1 and M2 overlap. The
modular decomposition substitutes each strong module of a graph by a new vertex
and proceeds recursively. The result is a rooted, unique tree called the Modular
Decomposition Tree, which can be computed in linear time [19].

Definition 17 (Modular Decomposition Tree). Let G = (V,E,L) be an
ordering relations graph. The Modular Decomposition Tree (MDT) of G, denoted
by MDT (G), is a containment hierarchy of all strong modules of G.

Fig.6(f) shows the MDT of the ordering relations graph that is proposed in
Fig.6(a). Each module is enclosed in a box with rounded corners. Note that
module names hint at their class. For instance, module C1 is a complete module,
and is composed of two nodes a and b that are in conflict relation, a # b.
Therefore, C1 is a xor complete module. Similarly, C2 is an and complete
module. By treating both modules as singletons, the modular decomposition
identifies that they are in total order and, hence, form a linear module L1.

We are now ready to present the main result of this section.

Theorem 2. Let G be an ordering relations graph. The Modular Decomposition
Tree of G has no primitive module, iff there exists a well-structured process model
W such that G is the ordering relations graph of W .

Proof. Let G = (V,E,L) be an ordering relations graph.
(⇒) Assume that the MDT of G has no primitive module. We show now by

structural induction on the MDT of G that there exists a well-structured
process model W with ordering relations G. The MDT of G contains singleton,
linear, and complete, and xor complete modules.

Base: If the MDT of G consists of a single module M , then M is singleton and
W is a process model composed of a single task m ∈M .

Step: Let M be a module of the MDT of G such that each child module of M
has a corresponding well-structured process model. If M is linear, then W
can be a trivial or polygon component composed from children of M , cf., 2
in Prop. 1. If M is complete, then W can be a bond component, either and
or xor, composed from children of M , cf., 4 in Prop. 1. In both cases, M has
a corresponding well-structured process model.

Therefore, there exists a well-structured process model W composed from
children of module V of G that has ordering relations graph G.

(⇐) Let W be a well-structured process model with ordering relations graph G.
We want to show that the MDT of G has no primitive module. Because W is
well-structured, the RPST of W has no rigid component. The corresponding
ordering relations graph of a non-rigid component, i.e., trivial, polygon, or
bond component, is either complete or linear, cf., 1 and 3 in Prop. 1. If W is
composed of a single task, then G consists of one singleton trivial module. ⊓⊔

Finally, we detail the approach for structuring acyclic rigid components in Alg.2.

Based on all previous results, Alg.2 synthesizes, whenever possible, the RPST of
an FCB-equivalent well-structured component for a given acyclic rigid component.
No variables are introduced. Task duplication depends on the “quality” of the
prefix unfolding. The complexity of the algorithm is determined by the exponential

Structuring Acyclic Process Models 15

Algorithm 2: Restructure an Acyclic Rigid Process Component

Input: An acyclic rigid process component
Output: The RPST of a well-structured process component
Compute the complete prefix unfolding of the input process component
Compute the ordering relations of the unfolding (Alg. 1)
Restrict the ordering relations to the set of non-τ transitions
Compute the MDT of the graph formed with the restricted ordering relations
Construct the RPST by traversing each module M of the MDT (in postorder)
○ If M is trivial singleton, then generate a task
○ If M is and complete, then generate an and bond component
○ If M is xor complete, then generate a xor bond component
○ If M is linear, then generate a trivial or polygon component
○ If M is primitive, then FAIL // component cannot be restructured

return the RPST

complexity of the unfolding (see earlier discussion). All other steps are polynomial.
In the case of an and rigid, the unfolding is not needed because the WF-net
of an and rigid is already an occurrence net. The algorithm fails if the input
process component is inherently unstructured, such as the process component
in Fig.7(a). In this particular case, the ordering relations graph forms a single
primitive module, cf., Fig.7(b). Note that the unfolding step duplicates task f .

a

b

c

d

e

f

Book freight
shipment

Send
invoice to
customer

Handle
confidential
shipment

Handle
regular

shipment

Request
security

clearance

Send
delivery
notice

(a)

a

f2

f1

e d

c

b

(b)

Fig. 7. (a) A rigid process component and (b) its ordering relations graph

6 Conclusion

We conclude that a sound and safe acyclic process model is inherently unstructured
if its RPST has a rigid component for which the modular decomposition of its
ordering relations contains a primitive. In all other cases, Algorithm 2 applied
to each rigid in the RPST constructs an equivalent structured model. We have
thus provided a characterization of the class of structured acyclic process models
under FCB equivalence, and a complete structuring method. This method is
implemented in a tool, namely bpstruct, that structures BPMN models exported
from Oryx5. The tool is available at https://code.google.com/p/bpstruct/.

This method can also be used to structure models with SESE cycles, even
if these cycles contain unstructured components. In this case, the unstructured
components and the cycles are in different nodes of the RPST. However, the

5 http://oryx-project.org/

https://code.google.com/p/bpstruct/

16 Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas

proposed method cannot deal with models with arbitrary cycles. Also, the results
do not apply to models with OR-joins, complex gateways, exception handlers
and non-interrupting events. Future work will aim at lifting these restrictions.

Acknowledgments. This research is partly funded by the ERDF via the Esto-
nian Centre of Excellence in Computer Science.

References

1. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On Structured Workflow
Modelling. In: CAiSE. Volume 1789 of LNCS. (2000) 431–445

2. Laue, R., Mendling, J.: The Impact of Structuredness on Error Probability of
Process Models. In: UNISCON. Volume 5 of LNBIP. (2008) 585–590

3. Laguna, M., Marklund, J.: Business Process Modeling, Simulation, and Design.
Prentice Hall (2005)

4. Combi, C., Posenato, R.: Controllability in Temporal Conceptual Workflow
Schemata. In: BPM. Volume 5701 of LNCS. (2009) 64–79

5. Oulsnam, G.: Unravelling unstructured programs. Comput. J. 25(3) (1982) 379–387
6. Liu, R., Kumar, A.: An Analysis and Taxonomy of Unstructured Workflows. In:

BPM. Volume 3649 of LNCS. (2005) 268–284
7. Hauser, R., Friess, M., Küster, J.M., Vanhatalo, J.: An Incremental Approach to the

Analysis and Transformation of Workflows Using Region Trees. IEEE Transactions
on Systems, Man, and Cybernetics, Part C 38(3) (2008) 347–359

8. Polyvyanyy, A., Garćıa-Bañuelos, L., Weske, M.: Unveiling Hidden Unstructured
Regions in Process Models. In: OTM. Volume 5870 of LNCS. (2009) 340–356

9. Hauser, R., Koehler, J.: Compiling Process Graphs into Executable Code. In:
GPCE. Volume 3286 of LNCS. (2004) 317–336

10. Koehler, J., Hauser, R.: Untangling Unstructured Cyclic Flows - A Solution Based
on Continuations. In: OTM. Volume 3290 of LNCS. (2004) 121–138

11. Ouyang, C., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Mendling,
J.: From business process models to process-oriented software systems. ACM Trans.
Softw. Eng. Methodol. 19(1) (2009)

12. Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of
Control Flow in Workflows. Acta Inf. 39(3) (2003) 143–209

13. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data
& Knowledge Engineering 68(9) (2009) 793–818

14. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization
of the refined process structure tree. Technical Report RZ 3745, IBM (2009)

15. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Application and Theory
of Petri Nets. Volume 1248 of LNCS. (1997) 407–426

16. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using
petri-net-based techniques. In: BPM. Volume 1806 of LNCS. (2000) 161–183

17. van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum (Extended Ab-
stract). In: CONCUR. Volume 458 of LNCS. (1990) 278–297

18. Best, E., Devillers, R.R., Kiehn, A., Pomello, L.: Concurrent bisimulations in petri
nets. Acta Inf. 28(3) (1991) 231–264

19. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed
graphs. Discrete Applied Mathematics 145(2) (2005) 198–209

20. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding
Algorithm. FMSD 20(3) (2002) 285–310

21. Kondratyev, A., Kishinevsky, M., Taubin, A., Ten, S.: Analysis of Petri Nets by
Ordering Relations in Reduced Unfoldings. FMSD 12(1) (1998) 5–38

	Structuring Acyclic Process Models
	Introduction
	Background and Related Work
	Taxonomy of Process Components
	Related Work

	Preliminaries
	Petri Nets
	Process Model

	Behavioral Equivalence of Process Models
	Fully Concurrent Bisimulation
	Behavioral Equivalence and Ordering Relations

	Synthesis of Structured Process Models
	Computing Ordering Relations
	From Ordering Relations to Process Models

	Conclusion

